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SUMMARY

,.
I

By use of an approxtiate equation for the wave drag of slender
I bodies of revolution in a supersonic flow field, the op~imwn shaped of

,! certain boattail bodies are determined for minimm wave drag. The prop-1
I erties of three specific families of bodies are determined, the first

family consisting of bodies having a given length and base areaand a
I contour ‘passing through a prescribed point between the nose and base,

the second family having ftied length, base area, and maximum area, and
the third family having given length, volume, and base area. The method
presented.is easily generalized to determine minimun-wave-dr~g profile
shapes which have contouqs that must pass through any prescribed number
of points.

,

According to linearized theory, the optinnm profiles are found to
have infinite slope at the nose but zero radius of curvature so that the
bodies appear to have pointed noses, a zero slope at the body base, and
no vsriation of wave drag with Mach number. For those bodies having a
specified intermediate diameter (that is, location and magnitude given),
the maxtium body diameter is shown to be larger, in general, than the
specified dismeter. It is also shown that, for bodies having a specified
maximum diameter,
but is detemined

the location of the maxi&un-diameter is not arbitrary
from the ratio of base diameter to maximum diameter.

INTRODUCTION

The wave drag of slender bodies of revolution hav~g,cross -sectional
areas with a zero slope at the base was shown by Von Karman (reference 1)
to be given approximately by a double integral depende~t only on the body\
shape and independent of Mach number. By use of Von KArm&I1S integral

, and the calculus of.variations, several authors (references 1 to 4) have

i ,, treated the problem of determining optimun body shapes to give minimum
wave drag. All these tivestigations have been concerned with either
closed bodies or”a body, such as a shell, having its maximum thickness
at the baae; however, none have treated bodies having boattails, and
this problem is considered herein. “
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2 NACA TN 2550

Ward (reference 5) has shown that bodies having ~ finite slope at
the base give rise to drag terms in addition to Von Kum&n’s integral
and these additional terms include Mach number effects. The present
paper shows, however, that the optinnm bodies m~t have a zero slope at
the base and consequently the additional terns vanish. The determination
of the minimun-wave-drag bodies of revolution with boattailing then
resolves itself to mintiizing the same integral as used by the reference
papers but with a more general treatment of the body profile.

Although the analysis to follow is concerned with wave drag only,
it should be remembered that the additional drag resulting from base
pressure and skin friction is also of importance. A brief discussion
of this additional drag is given in the concluding remarks.

SYMBOLS

.
D wave drag

q dynamic pressure of free stream

M free-stream Mach number

$=G ‘

1 body length

E distances made nondimensional with respect to 1/2 andx)
measured along body axis from midpoint of body

r(x) body radius

s(x) nondimensional .(7body cross-sectional area x
r(x)

(1/2)2

A specified cross-sectional area of body divided by (2/2)2

a body diameter corresponding to area A

smax maximum body cross-sectional area divided by (1/2)2

B body-base area divided by (2/2)2

—. _—... ——— .—...———— .———— - .-——— - ..-..=- -—.—. .———. . .
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maximum body diameterd

CD

v

c

e

drag coefficient

()

D

q(z/2)2sm=

body volume divided by (2/2)3

distance, divided by 2/2, from midpoint of body to loca-
tion of specified area A

distance, divided by 2/2, from midpoint of body to loca-
tion of &

Lagrange multiplier

ANALYSIS

By means of linearized theory, Ward (reference 5) has shown
the wave drag of a body of revolution in a supersonic flow field
given approxtiately by

,...

D
H

111— =-. #’(x)s’’(kj)lo&[X - ~ldxdg +
22
()

2fi J -~

‘z

JSl(l) 1
l-c

s“(x)lo&(l - X)dx - ~pql] 210G;JF
-1

where ’thebody cross-sectional area and the coordinate distances
been written in nondimensional form. ‘I’he
of equation (1) are that the body profile
slope) and that the rate of change of the
nose be zero (s’(-1) = o).

requirements in
have no corners
cross-sectional

.

9

that

is

(1)

have
the derivation
(a continuous
area at the

@timmn body hEWiIl~ given length and base area and a contour pssim~

through prescribed point between nose and base.- In certain practical
problems it may be destied to have a minimum-wave-drag body of revolution
which has a given length and baae area and which has a contour that must
pass through a specified diameter at a particular point between the nose

\
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and base of the body. Such a situation would arise, for
body of revolution were desired which would enclose some
or jet engine.

NACA TN 2550

example, if a
given rocket

Although the analysis to follow determines the optinnm body shape
which is requii’edto pass through three given pointsy tmt ti~ the nose) .
the base, and some in-between point, the manner in which the analysis
could be generalized to determine optimun body skpes which must paEs
through any prescribed nunber of points will become apparent.

I& it be supposed that the optimnn body shape is given by the
expressions

a s(x) = f(x)

s(x) = g(x)

Since the body must pass through three given
tions apply:

%J

points, the following condi-

f(-1) = o

1

f(c) = g(c) = A -

‘g(l) = B

(3)

The limitation of equation (1) allows no corners on the body profile;
hence,

and

f’(c) = g’(c) (4)

a further condition requires that f’(-1) = o.

Next consider another body shape such that

S(X) = f(x) + bh(x)

}

(-l SX SC)

(5)
s(x) = g(x) +yk(x) (Csxsl)

.,

.
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NACA TN 2550 5

where

h(-1) = h(c)

‘}

= k(c) = k(1) = h’(-1) = O

bh’(c) =?’k’(c)
(6)

This second body profile passes through the same three prescribed points
as the optimmn body profile and also satisfies the other conditions placed
on the optimum body. However, since f(x) and g(x) define the opttium
profile, the variations in the profile, bh(x) and 7k(x), must neces-
sarily produce an increased drag. It follows that h(x) and k(x) are
completely arbitrary in fo?m and that b and y are independent param-
eters. Substitution of equations (5) into equation (1) gives the drag
as a function of the two indepmdent parameters 5 and 7. If the rear
portion of the body is held fixed in its minimm-drag configuration, that
is, 7 = O, then

,

[1~D(5,0) ‘o
ab /j.()=

I J
c

=- h“(~) d~
[f

f“(x)lo&lx - @ +
-1 -1

r
g“(x)lo*lx -

c ‘1 ~]+ $’(’) J:h’’(x)’o*(’ -x):

where

h(-1) =h(c) =h’(-1) =h’(c) = O

In a similar manner, the forward portton of the body can be held fixed
in its optinnn nconfiguration,that b, 5 = O, and

... -. .—. —.. ..-. .,—. .- —---- .—--- ----- . ..— —--- .——. ——-. -———...- ..- ..-.
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[1aD(OjY)
o

& y.o ‘

J’
1

[f

c
=- k“(g) dg f“(x)lo&lx - El dx +

c -1

J’
1
g“(x)log Jx -

c ‘J q +k’(l)[~:f’’(x)’o~(l-x) ‘i+

where

Partial integration

k(c) = k(1) =kf(c) = O

of equations (7) and (8) yields

dP g(l) ~g’(l) lim ~’(X)lO&(l - Xl - g’(l)k’(l)lo~ ~ — =
x+1 Jr

(lo)

.

..— — . ..-__— --—— . ..—. — . . . . . . .. . .
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Inasmuch as h(~) is an arbitrary function, equation (9) yields directly

J
c

-1

Equation (10)
tion. Since
k’(l) =Oof

J

c

-1

cannot be reduced so readily but requires more considera-
k(g) is also arbitraty, it can be chosen such that
sufficient order and then

J’f’(x) ~+ —1 g’(x) ~ -
x- ‘5 x- !5

= A3~ + A4 (c~g~l) (12)
c

Now ~uppose that k’(1) is not zero but instead @ some finite value.
It then follows’from equations (10) and (U) that g’(1) m~t be zero;
that is, the opthmm body profile must have ‘azero slope at its base.
It is interesting to observe that the Mach nmber effeet on the drag
disappears for the minimum-drag bodies.

The simultaneous solution of integral equations (11) and (L2) will’
now give the optinnm body profiles sought. These two equations are
identical to those found in reference 2 in which mtiimum-drag closed
bodies were considered.

It is recognized that equations (11) and (12) are analogous to the
integral equations found in lifting-line theory. In the analog f‘(x)
and g‘(x) correspond to the vortex distribution, and the right-hand
sides of the equations represent the induced-normal-velocitydistributions
on the two-dimensionalwings with no thickness. The cross-sectional area
of the opthum body is therefore a linear combination of the surface
potential distributions which give rise to the following normal-velocity
distributions on two-dimensional wtigs:

.———._ ...___ .. . . ---- —— .._____ ___ .—— . - -.—— ———— .—- ——-..—.–.-
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(a)

-1 t c 1

(b)

(c)

-1

(d)

where

Cl = A3C + Ab C3 = Alc + A2

C2 = A3 C4 = -Al

In addition, a circulatory solution is required in order that the body
have a finite we area; that is, the analogous wing has a specified
lift.

Sketches (a) and (c) correspond to two-dimensional flat-plate wings
with deflected flaps, and sketches (b) and (d) represent flaps rotati.ng
with a constant angular velocity. The surface-potential distributions
for the four wings, as well as the circulatory solution, are all.found
in reference 6 and may be written

5 [dn .0s-1. - (x - C,mzjjP(a) = * (lsa)

.
.

—.—-— ___ ——. — . . . . ..— .—— — ..— . 2
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(13d)

t

where ‘

1

I

Iv=l-cx - r=’d==
lx - c1

(13e)

I

I

~d ~(r) represents the circulatory solution. The constants in equa-

tions (13 ) are determined by applying the following conditions:
<

s ?(-1) 4

1 “
s!(l) = o

S(c) =A (14)

S(1) = B

.

A further condition is needed to insure that the body have finite and
centinuous slope at the point c;.that is, c1 = C3.

f
The least-drag body, which has given length and base area and which

has a contour that must pass through the
given by

point c where S = A, is then

I

[ 1S(X) =A - ~ COS-l(-C) K_7

~

(l-cx)+;i A#(x. c)+
1 -c

[(A - ~ COS-l(-C)
J3’

1 )
-C22 -

( 13/p (x - c)210&N j-; COs-1(-x)
ill-c 2)

(15)

.
---- .. . .. .------ _______ _______ .__, . —& ______ _, ___ ._ ._ .__. —.- _—. -_—
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Some typical profiles defined by equt ion (15) are sho~m in figure 1,
where an arbitrary thickness ratio of approxhnately 20 percent has been
chosen. All the profiles defined by equation (15) have infinite slope
at the nose. However, the radii of curvature approach zero at the noses
so that the noses appear to have finite angles.

For ~tiug base area, equation (15) reduces to the body profiles
considered in reference 2. The opttium shell for given caliber and
length is obtained for A~B and c+ 1. ‘I’heresult iS

(16)

and ti in agreement with reference 1.

It should be pointed out that the maximum cross-sectional area Is in
general not coincident with, and may be larger than, either of the
areas A or B (see fig. l(a)). This result is contrary to two-
dtiensional profiles where the maxhman thiclmess is coincident with the
largest ordinate through which the profile is required to pass. The
maximum area of the body of revolution coincides with the point A only
when

The profiles in this case give mintium wave drag for given length, base
area, and maxhmn area, and the aea dtitribution ~ given by

.

B(x- C)*lO+N + ~ CosS(x)= ;d’+=

G2 B ‘l(-X)

The quantity c in this equation represents the location of the

(18)

maxhlum
dismeter and is determined, for any given ratio B/A (A = Sma), from

equatiori(17). A graph of equation (17) is shown in figure 2 and some
typical profiles defined by equations (17) and (18) (which are special
cases of equation (15)) are presented in figure l(b).

.

..—. .— .— —.. . . . . —.. J
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The wave drag for the opttiun %odies of equation (15) is essily
found to be

/

[

A -: COS-l(-C)
=IIA

Bc

(1 1-=92‘-~~=2)3/2+(-

{

B-
A -(: :O:l;:-:)[’= + cos-’(-cj+

-1
d ‘)B 1 - C2 + C 1 - C2 COS-l(-C)

3-( (1 - C2)2
(19)

The drag coefficient
area, and maximum area is

for optimum bodies of a given length, base
then found to be

(20)
.

where A = SH and c is defined by equation (17). This drag coef-

ficient is shown in figure 3 plotted against B/A.

If the optinnnnprofiles which must pass through several specified
points were sought, it follows from the present section that integral

. . .—-. .. . . .— -.. . —. —___—.— —— .—— —-—- -—. .—. —------



12 NACA’TN 2550

equations like equations (11) and (U) must be satisfied in each of the
specified regions.

Of some practical interest may be the least-drag body with a given
length and base area and which must have as a part of itp profile a
cylindrical collar of constant radius. The problem in this case reduces
to the solution for a tandem biplane configuration havfig the same upwash
distribution on the wing surface as in the previous problem.

Optimum body having,given length, volume, and base area.- It follows
from the previous section that again the optimum bodies having given
length, volume,
The calculus of
stationary:

and base area will also have a zero slope at the base.
variations then gives the following integral to be made

11
1 M’ J

1
-—
2YC -1 -1 S“(x)S’’(~)lo&lx - EI dx dg + A s(x) dx

-1

(21)

with the following conditions on the body shape:

1S(-1) =s’(-1) =s’(1) = o

S(1) =B

J
1

s(x) dx =V
-1

}

J
(22)

By following a procedure similar to tht used in the previous section,
the following i.ntegal equation is deduced:

.

J’%’(x) ~=K1#2+@ +K3

-l x-~

(-~g.eel) (23)

.

— _._— .——. .— —.— ——. - .. —.- —-—. .—..— ;
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Again by use of the wing analo~, the,
~ reference 6, and the constants are
final result is

s (x) .;y(l -#2+

13

solution to equation (23) is found
detemined frcm equation (22). The

#X f=~ + : =OS-’(-X) (24)

For vanishing base area B this result reduces to the optinnnnbody for
given length and volune as found in reference 2.

,1 Typical body profiles as given by
I ure 4. The profile shapes at the nose

to have essentially the same character
I vious section.

The
is found

The
equation

.

equation (24) are shown in fig-
and base of the body can be seen
as the profiles found.in the pre-

wave drag for those bodies having a given volume and baae area

to be

D—=

(2)

22 [* 8V(V - 12B) + 9B2

q–
(25)

location of the maximum thichess for the bodies defined by’
(24) is given by

.

(26)

Therefore, for a given ratio V/B or a given location of maximun thick-
ness, the ratio of the base area to the maximum area is readily found.
A graph of the location of the maxtiun thickness a@nst B/Sm= is

shown in figure 5. The wave-drag coefficients for the same values of

/
B Sma are shown h figure 6.

.
-.. .----- . ... . .,____ —._.. ..-. .. +_- -_ ——— .. . ..
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CONCLUDING REMARKS

By use of an approximate equation for the wave drag of slender
bodies of revolution in a supersonic flow field, the minimum-wave-drag
body shapes have been determined for three cases: (1) the body has given
length and base area and a contour that passes through a prescribed point
between the nose and baae, (2) the body has given length, base area, and
maximum area, and (3) the body has given length, base area, and volume.

The optimum body profiles are shown to have: (1) infinite slope at
the nose but zero radius of curvature so that the bodies appear to have
pointed noses, (2) a zero slope at the body base, and (3) no variation of
wavq drag with Mach number. For those bodies having a specified inter-
mediate dismeter (that is, location and magnitude given) the maximum body
d.ismeteris found to be, in general, larger than the specified diameter.
It was also found that, for bodies having a specified maximum diameter,
the location of the maximum diameter is not arbitrary but is determined
from the ratio of base diameter to msximum diameter.

In order to find body profiles that give minimum total drag, con-
sideration must be given to skin-friction and base-pressure drag. As
for skin-friction drag, it can be said that the profile shape is of
secondary importance and that the wetted area of the body and the
Reynolds number are the primary factors.

In cases where the base pressure is independent of the body shape,
for example, where a supersonic jet exits at the base, the optimm pro-
files sought are the same as those dete”mnlnedherein. If no jet exits
at the body base, the base pressure is dependent upon the body shape.
Just what the dependence is is not sufficiently clear at the present
time. However, the profiles determined may require some slight changes
and further investigation, in which account is taken for both the wave
drag and basb-pressure drag, would be necessary.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Vs., Augugt 21, 1951
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—= 8.32
(d/z)2
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1.-

3

9.78

.

1

! 3
a

1--

4

3
10.74

.

(a) Bodies having a given length and base diameter and a contour
through another specifically located diameter.

Figure l.- Typical

passing

optimum body profiles defined by equation (1s).
Thicknessj 20 percent.

!
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El-s—
A 16

c = 0.02

cD
= 9.29

~

‘ 0.09

7.53

$

0.26

4.75

=s=

(b) Bodies having given length, ~se area, and
maximnn area (A = ~).

Figure 1.- Concluded. .

4
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1,2

.8

c

I

“o

Figure 2.- Location of
length, base

CD

TVdz2

4

.4 .6 .8

b/A

~ diameter for optimum bodies
area, ahd rwdmm area (A =“%).

of given

n

I I ‘1+ I =s= I

‘o .2 ‘4 .6 .8 1.0
B/A

Figure 3.- Wave-drag coefficient for optimum bodies of given length,
base area, and mximum area (A = %).
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. —=—
~ :6

e = O.OLj

CD
= 10.39 “

(d/u2

.

.

~

4
0.061

8.49

~
16

0.174
5*57

=s=

Figure h.- ~ical optimum body proffies which have given length, volume,
and base diameter defined by eqiiation(24). Thickness, 20 percent.
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.

e

-e 5.-
area to
area .

{
-o .2 4? .6 .8

‘/s~ax

Location of maximum body diameter for a given ratio of base

maximum area for bodies of a given length, volume, and base

“o .2 .4 .6
“ 43/sm~x

Figure 6.- Wave-drag coefficient for a given ratio
area for bodies of a given length, volume,

*8 10

of base area to
and base area.
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